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Adjusting for Long-Term Anomalous Trends in
NOAA’s Global Vegetation Index Data Sets
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Abstract—The weekly 0.144◦ resolution global vegetation in-
dex from the National Oceanic and Atmospheric Administration
(NOAA) National Environmental Satellite, Data, and Information
Service (NESDIS) has a long history, starting late 1981, and
has included data derived from Advanced Very High Resolu-
tion Radiometer (AVHRR) sensors onboard NOAA-7, -9, -11,
-14, -16, -17, and -18 satellites. Even after postlaunch calibra-
tion and mathematical smoothing and filtering of the normal-
ized difference vegetation index (NDVI) derived from AVHRR
visible and near-infrared channels, the time series of global
smoothed NDVI (SMN) still has apparent discontinuities and
biases due to sensor degradation, orbital drift [equator crossing
time (ECT)], and differences from instrument to instrument in
band response functions. To meet the needs of the operational
weather and climate modeling and monitoring community for
a stable long-term global NDVI data set, we investigated ad-
justments to substantially reduce the bias of the weekly global
SMN series by simple and efficient algorithms that require a
minimum number of assumptions about the statistical properties
of the interannual global vegetation changes. Of the algorithms
tested, we found the adjusted cumulative distribution function
(ACDF) method to be a well-balanced approach that effectively
eliminated most of the long-term global-scale interannual trend of
AVHRR NDVI. Improvements to the global and regional NDVI
data stability have been demonstrated by the results of ACDF-
adjusted data set evaluated at a global scale, on major land
classes, with relevance to satellite ECT, at major continental
regions, and at regional drought detection applications.

Index Terms—Advanced Very High Resolution Radiometer
(AVHRR), land surface, normalized difference vegetation index
(NDVI), remote sensing, satellite-based vegetation, vegetation
index.

I. INTRODUCTION

THE WEEKLY global vegetation index (GVI) at 0.144◦

resolution developed and maintained by the National
Oceanic and Atmospheric Administration (NOAA) National
Environmental Satellite, Data, and Information Service
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(NESDIS) [1], [2] has been produced since late 1981. This
GVI data set includes different generations of Advanced
Very High Resolution Radiometer (AVHRR) sensors onboard
NOAA polar-orbiting satellites. For the Second Generation
GVI (denoted GVI2 hereafter), operational weekly composite
values of AVHRR channels, along with satellite scan angles
and solar zenith angles, corresponding to weekly (i.e., seven
days) maximum value composites (MVCs) of normalized dif-
ference vegetation index (NDVI) are saved into arrays having
dimensions of 2500 pixels (west to east) by 904 pixels (north
to south), covering the region of 55◦S to 75◦N. NESDIS used
all of the afternoon overpass satellites (e.g., NOAA-7, -9, -11,
-14, -16, and -18), as well as some of the morning overpass
satellite data (e.g., NOAA-17) when the afternoon overpass
satellite malfunctioned, to composite the long-term GVI2
data set.

Although the NOAA GVI2 data sets and derived products are
used to monitor global and regional vegetation conditions and
to investigate droughts and other climate impacts on the land
surface, the current GVI2 data set has no climate data record
(CDR) quality due to numerous errors associated with sensor
degradation, orbit drift (which impacts the viewing geometry,
e.g., sun angle of the acquisition, resulted in changes in the mea-
surements), and variation of sensor response functions among
different AVHRR sensors.

When operationally producing the NOAA weekly GVI2,
the MVC scheme reduces cloud contamination at the weekly
interval. However, impact of persistent cloud cover (longer
than the compositing period) cannot be fully removed. In the
past, to use the GVI2 data set for regional drought monitoring,
additional multistep mathematical smoothing and filtering were
applied to the weekly NDVI to reduce impact of persistent
cloudiness [3]. Drought monitoring indexes based on smoothed
NDVI (denoted SMN) have shown great success in detecting
regional droughts worldwide [3]–[6].

NDVI is calculated as NDVI = (ρNIR − ρVIS)/(ρNIR +
ρVIS), where ρVIS is the remotely sensed surface reflectance
in visible (VIS) band in the red portion of the spectrum where
chlorophyll absorption is maximal, and ρNIR is the reflectance
in near-infrared (NIR) band where light reflectance from the
plant canopy is dominant. For AVHRR, these are channel 1
(visible band: 0.58–0.68 µm) and channel 2 (near-infrared
band: 0.72–1.1 µm). NDVI measured greenness and vigor of
vegetation [7] and correlated with the fraction of photosynthet-
ically active radiation absorbed by vegetation [8]. In this paper,
we use NDVI as a proxy for surface vegetation greenness for
simplicity. SMN, however, does not remove biases or long-
term trend in the global NDVI time series. Fig. 1 shows the
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Fig. 1. Weekly global SMN time series of maximum, mean of top 1% highest,
mean, and standard deviation of global NDVI.

time series curves for the 1) maximum; 2) mean of top 1%;
3) mean; and 4) standard deviation of the weekly global SMN
for 22 years from 1982 to 2003. Among these 22 years, a
number of years’ data have very poor quality for obvious
reasons. For example, the NDVI decrease from 1988 to 1989 is
due to the serious degradation of NOAA-9; the NDVI decrease
from 1991 to 1992 is likely due to volcanic ash from the
Mt. Pinatubo eruption in June 1991 [9]; and the NDVI decrease
from late 1994 to early 1995 is due to replacement of NOAA-11
by NOAA-9 (which was already seriously degraded). These
events are evident from the mean value and the mean of top
1% curves in Fig. 1. These SMN fluctuations are “noise,” in
the sense that they are not related to true vegetation anom-
alies. Given the operational constraints and difficulties using
ground truth observations to correct different AVHRR channels,
full physically based corrections that could compensate for
1) satellite orbit drifting and sensor degradation; 2) differences
in AVHRR sensor response functions; and 3) contamination
from atmospheric water vapor and aerosols were not feasible
when producing the GVI2 data sets. Consequently, despite the
aforementioned mathematical smoothing and filtering, long-
term biases and trends in global SMN data sets are still present.
Fig. 1 also indicates that there are other trends that do not
arise for obvious reasons, such as the drop of peak values
(in the mean value and the mean of top 1% value curves)
in 1983 and the rise of standard deviation values after 2001.
The most important use of the AVHRR NDVI at NOAA is to
initialize the surface physics modules running in the operational
numerical weather prediction (NWP) models. To do this, the
current (for the latest week) green vegetation fraction (GVF)
will be derived from the operational GVI2 products and will be
delivered to the NWP models in future operations. The GVF is
used by the NWP models to partition the surface energy fluxes
between direct evaporation from bare soil and evaporation from
the vegetation canopy and transpiration through the canopy.
NDVI can be directly rescaled into surface GVF [10], which
parameterizes land surface evaporation and transpiration in the
models. Accurate knowledge of surface GVF helps improve
multiple components of surface evapotranspiration terms [11]
that improve near-surface temperature and humidity forecasts.
For this use, the GVF must reflect vegetation anomalies caused

by droughts and periods of higher-than-normal rainfall. To
accurately achieve this, the GVF (and the underlying NDVI)
must be free of noise and trends caused by atmospheric effects
and instrument-to-instrument variability. The work described
below is an attempt to reduce the noise and trends in the
data without removing information about vegetation anomalies
caused by short-term (weeks to months) weather fluctuations.

Ideally, an algorithm to fix the discrepancies in the NDVI
time series should meet the following goals: 1) remove the
inconsistencies caused by false signals (or noise) as well as
the nonphysical systematic errors and 2) retain and enhance the
true signal so that seasonal and annual vegetation anomalies
can be quantified. More importantly, the algorithm should
have components to correct biases related to each error source
with full physics-based adjustments. However, in reality, full
physics-based adjustment often requires additional observation
data/parameters, which makes correction impossible in real
time or unsound when the solution involves more unknowns
than measurable quantities. Such dependency (on other ob-
served or model derived parameters) may result in larger er-
rors in operational production and undesirable computational
and production complexity. Data independency is one of our
key requirements for developing operational systems that can
efficiently generate products.

In this paper, rather than investigating complicated physics-
based methods that need additional data or computationally
expensive empirical time series decomposition/reconstruction
approaches, we will use a number of mathematical and sta-
tistical approaches with the goal of making it usable in
real time within the operational environment constraints at
NOAA/NESDIS.

The adjustment approaches are all based on straightforward
assumptions of global statistical stationarity of the land sur-
face vegetation. Such stationarity assumptions eliminate the
possibility of using the adjusted data sets to assess global-
scale net interannual NDVI changes over the past two decades;
nevertheless, such assumptions do not preclude using the ad-
justed NDVI to reveal regional or local vegetation anomalies.

The key purpose of this paper is to deliver an operationally
feasible algorithm that can produce a more internally consistent
and improved quality NDVI data set for the NOAA/NESDIS
operational vegetation processing data stream. In particular,
we have:

• investigated a number of mathematical and statistical
adjustment methods;

• evaluated the global statistical properties and implications
of SMN data sets adjusted by different methods;

• evaluated the performance of the adjusted SMN data
sets on global major land type classes, major continental
regions, and on the relevance to polar-orbiting satellite
equator crossing time (ECT);

• demonstrated the usefulness of the adjusted NDVI for
regional drought detection.

The corrections/adjustments that we have investigated in
this paper can be easily implemented in operations without
interfacing with other data sources that would prohibit a real
time implementation. We must emphasize that the data sets
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processed will not address issues related to global warming and
global-scale surface vegetation trend over the past two decades.
Nevertheless, regional-scale vegetation anomaly studies are not
affected. Further discussion on this issue will be provided in
Section IV. The adjusted global NDVI data sets should be
interpreted as the top of atmosphere (TOA) quantities.

Section II describes the characteristics of the AVHRR data
(in Section II-A), the necessity of a benchmark weekly NDVI
climatology (in Section II-B), and a variety of single-step ap-
proaches as well as combinational approaches (in Section II-C).
The results of different approaches are evaluated and compared
to each other in Section III, which also includes the evaluation
with respect to regional droughts. Section IV provides a further
discussion on the pros and cons of the adjustment approaches
investigated in this paper. Section V concludes this paper.

II. APPROACHES TO ADJUST THE LONG-TERM

ANOMALOUS TRENDS IN GLOBAL NDVI DATA SETS

A. Data Description

GVI2 data sets are composed of data from NOAA-7 (week
35 of 1981 to week 14 of 1985), NOAA-9 (week 15 of 1985 to
week 44 of 1988, as well as week 37 of 1994 to week 6 of 1995
when NOAA-11 data were not reliable), NOAA-11 (week 45
of 1988 to week 36 of 1994), NOAA-14 (week 7 of 1995 to
week 52 of 2000), NOAA-16 (week 1 of 2001 to week 11 of
2004), NOAA-17 (week 12 of 2004 to week 34 of 2005), and
NOAA-18 (week 35 of 2005 to present). In this paper, our
sample data sets will include SMN from week 1 of 1982 to
week 52 of 2003, a total of 22 annual cycles.

The best available calibration was applied to the weekly com-
posite AVHRR visible (VIS) and near-infrared (NIR) channels
(based on NDVI MVC) using the methods described by Rao
and Chen [12] for NOAA-7 to NOAA-14 and by Wu [13]
for NOAA-16. After NDVI is calculated from these channels,
a temporal smoothing filter was applied to obtain the SMN
series. The smoothing technique was designed as a 15-week
moving filter that includes multiple steps (such as gap filling,
five-week median filtering, and 15-week smoothing using a
predefined varying coefficient weighting function). The filter
helped to tremendously reduce the high-frequency fluctuations
such as those due to cloud and short-term weather changes [3],
[14]. The resulting SMN data sets are the subject of our study.
On the other hand, due to the use of the 15-week smoothing
filter, the near real-time operational process will have the un-
stable end-of-time-series issue commonly seen in most of the
smooth filtering techniques. Similar to many other operational
weather products, this is overcome by distinguishing the real
time products into “initial early product” (which is the earliest
possible product in real time at the end of the smoothing filter),
“final update product” (which is the best quality product taking
full advantage of the smoothing filter and not further affected
by updated real time data, lying in the middle of the smoothing
filter), and “temporary product” (which lies between the final
update product and the initial early product and gets updated
each week when new data are processed by the smoothing
filter). Given our design of the 15-week smoothing filter, “final

update product” is seven weeks behind real time, whereas
“initial early product” is generated for just the past week. In this
paper, if no explicit explanation is provided, we use “NDVI”
to mean “SMN.”

As shown in Fig. 1, the time series of 1) global maximum
NDVI (which compose of the maximum single-pixel NDVI
value from each week’s global NDVI map); 2) mean of top 1%
NDVI value; and 3) global NDVI standard deviation are plotted.
The curve of global minimum NDVI value is not shown since
it is very close to zero and uniform over time. Obviously, the
weekly global mean NDVI of the earlier satellites of NOAA-7
and NOAA-9 are lower than those of NOAA-11, -14, and -16.
The abnormally low mean annual value of NDVI in 1988
was due to the serious degradation of NOAA-9 as well as
the very late local time of observation (e.g., 4–5 P.M.). The
abnormally low annual values of NDVI near the end of 1994 to
the beginning of 1995 was due to the substitution of NOAA-9
for NOAA-11 (which was already in serious degradation) just
to operationally continue the time series.

B. Benchmark NDVI Climatology From Years With High
Data Quality

Overall, the global maximum NDVI in each weekly map
represents the Earth’s “greenest” vegetation in a proxy sense,
regardless of the seasonal cycles in different latitude or climate
zones. Such value, although its exact pixel location will vary,
should be relatively invariant given that fully vegetated areas
always exist at any given week on Earth. For example, the trop-
ical forests are always covered with nearly full vegetation, given
the abundant rainfall and favorable temperature for vegetation
growth in tropical zones, whereas seasonal cycles for other re-
gions of the Earth will have dominant effects. The Northern and
Southern Hemispheres have reversed seasonal cycles, so when
one is in winter or pregrowing season, the other will be in sum-
mer or postgrowing season. For a given tropical forest region,
the highest NDVI values may not always be detectable from
satellite due to frequent and persistent cloud cover. However, it
is unlikely that the whole tropical forested regions of the Earth
will be all covered by cloud at any given week. Further, in many
nontropical regions, when the full vegetated season is reached,
the maximum NDVI (detected from space) in these regions can
be as large as or larger than those on the tropical forest. These
factors cause the global maximum value of the observed NDVI
from satellite to be very stable from week to week and from
year to year, given the very large total number of pixels over
the Earth’s land surface. Close examination of the weekly max-
imum NDVI (i.e., NDmax) time series in Fig. 1 shows that this
parameter is not always stable as it should be if our reasoning
of the “stable global maximum” NDVI above is sound. After
we further examined the maximum NDVI time series, as we
expanded the plot of the same data series in Fig. 1 into 22
annual cycles, we found that weekly maximum NDVI is rela-
tively more stable in years 1989, 1990, 1995 (after week 14),
and 1996–1998. These were the stable performance periods
of NOAA-11 and NOAA-14, during which the weekly global
NDVI data have relatively high quality. For all these years,
the NOAA polar-orbiting satellites have local observation time
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TABLE I
LIST OF GLOBAL NDVI ADJUSTMENT APPROACHES EVALUATED

between 1:30 P.M. and 3:00 P.M. We selected the above six
years as reference to form the benchmark weekly climatol-
ogy of NDVI. (Additionally, years 2001, 2002, and 2003 of
NOAA-16 data appear also to be good, except for the sys-
tematic yet stable overestimate of NDVI compared to other
years—most likely caused by the narrower AVHRR sensor
spectral bands in the VIS and NIR channels.) Weekly global
SMN from these six years are averaged and used as a bench-
mark for adjusting other years’ data using approaches described
in Section II-C.

C. Approaches

We will evaluate a number of single-step and combinational
approaches. These are highlighted below. Further detailed de-
scriptions of these approaches are provided in Table I.

1) Range rescaling (RRS)—The basic idea of RRS is to
use the weekly global NDVI from a reliable year or
best known short multiyear period (with little trend in
the given NOAA satellite platform) as benchmark data
set, then rescale weekly NDVI in other years within the
proper maximum and minimum NDVI range prescribed

by the benchmark data set. Referring to (1) in Table I,
although the minimum NDVI (NDmin) is very close to
zero (i.e., NDmin ≈ 0.0), we have the option to select
ND0max and NDmax as the absolute maximum NDVI
within the weekly global NDVI map, or as the mean
of, for example, top 1% highest NDVI value pixels. The
latter may overcome the statistical limitation of picking
the maximum NDVI value from a single pixel of the
weekly global NDVI map. See Table I for options a and b.

2) Normalization (NML)—Statistically normalized quanti-
ties from two different sample spaces are often found
to be equivalent to one another when one sample space
is a linear transform of another or vise versa. Assuming
statistically normalized global NDVI is stationary for the
same week of different years, we can use the benchmark
climatology as standard and adjust other years’ weekly
NDVI within the standardized or normalized range. See
option c in Table I.

3) Linear regression (LR)—This is another straightforward
approach that can transform linearly biased samples to
standard level with the latter given by the benchmark
climatology. See option d in Table I.
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Fig. 2. Schematic illustration of the CDF adjustment approach. In the adjust-
ment process, real time global NDVI is adjusted such that the ACDF matches
the benchmark CDF.

4) Adjusted cumulative distribution function (ACDF)—This
approach is to adjust the weekly global NDVI such that
for a certain week, the ACDF matches the CDF of the
benchmark (i.e., six-year climatology). A schematic il-
lustration of this approach is provided in Fig. 2. This
is a nonlinear approach since different NDVI values
will be differently adjusted depending on how the cor-
responding cumulative probability in the to-be-adjusted
data set is different from that of the benchmark. After the
adjustment, the CDFs are identical for the weekly global
NDVI and the benchmark. The underlying assumption is
that global vegetation for a certain week is stationary in
terms of total amount and the net amount within each
NDVI interval. Only the spatial distribution of global
NDVI may be different. Considering that the historical
global precipitation is not stationary even at monthly time
scales, the assumption in this approach may be too strict
in that it eliminates global interannual variations for the
same week of different years. However, the assumption
has no mechanism to constrain spatial distribution of
weekly global NDVI, which is a desirable feature that
allows the adjusted NDVI to be used to reasonably detect
local or regional NDVI changes, droughts, or vegetation
stress. Further, the original highs and lows of NDVI
within the weekly global map will not change in a relative
sense, although the absolute magnitudes are adjusted.
The results from the ACDF approach are summarized
in Section III. For other descriptions for this method,
see option e in Table I.

5) NML followed by RRS—Our criteria to evaluate the
effects of different approaches are simple: whether anom-
alous/spurious trends in weekly global NDVI time series
are removed and whether the range of NDVI values
within a global map is reasonable (e.g., consistent from
week to week). The first can be examined by determining
if the trend in the global mean NDVI time series has been
removed after adjustment. The second is met if we have
got rid of the variations in the range of NDVI (marked
by NDmax and NDmin, or by the top 1% maximum
ND and NDmin). Since NDmin is always close to zero,

the effects can be seen in the NDmax time series. As
will be described in Section III, most of the single-
step approaches cannot simultaneously meet both criteria.
The difference is in the relative extent to which these
approaches can meet the above criteria. A combinational
approach, which, for example, uses the RRS or NML
as a second step, may help fix the global NDVI ranges
after major discrepancies are eliminated in global NDVI
mean time series.

6) Adjusting satellite-by-satellite (SBS) followed by
NML—One shortcoming of the above simple adjustment
approaches is in the need to use a benchmark of a whole
annual cycle of weekly global NDVI, which comes from
the believed-to-be best climatology from a subset of
the 22-year data record. It is expected that the global
NDVI after adjustment will be similar to the six-year
climatology (in terms of global statistical metrics),
which makes it hard for the adjusted data set to detect
any global-scale NDVI trend over the period of record.
Issues with this limitation will be further described in
Section IV.

To eliminate the need for a benchmark weekly NDVI cli-
matology, an alternative is to make adjustment SBS, then
further line up values among different satellites by adjusting
the differences. For example, considering that each satellite
underwent initial in-flight stable operation, then drift to a much
later ECT and sensor degradation in a gradual fashion, we
can assume data from the first year of each satellite’s stable
operation have relatively high quality, then adjust the follow-on
years’ NDVI values to the same level to that of the first year.
Using a similar equation, as (2) in Table I, but with ND0 and
σND0 representing the mean and standard deviation of a certain
weekly global NDVI for the first year, respectively, and ND
and σND representing the corresponding metrics for the to-be-
adjusted week in another year, respectively, then the equivalent
NDVI (to the level of the first year) after adjustment can be
easily calculated by this equation. As such, we selected years
1982 for NOAA-7, 1986 for NOAA-9, 1989 for NOAA-11,
1996 for NOAA-14, and 2001 for NOAA-16, and made the
adjustment SBS.

After such adjustment, different years’ global NDVI data for
a same satellite should be at the same level. In other words,
global bias due to the same sensor degradation and orbit drifting
is gone. However, as expected, there will still be discrepancies
among different satellites after this step due to differences in the
designed VIS and NIR band sensor response functions as well
as the atmospheric contamination effects associated with these
response functions. A combinational approach, for example,
using the NML as a second step, may help to remove the major
discrepancies caused by different satellites.

Approaches 1), 2), and 3) are essentially linear under the
assumption that the global mean NDVI time series is stationary,
and the two sample spaces (i.e., real-time weekly global NDVI
space and benchmark weekly global NDVI space) are linearly
related. Approach 4) is nonlinear, whereas approaches 5) and
6) are composed of linear steps. Further, all of these approaches
assume the global stationary property of the weekly NDVI but
do not constrain the local vegetation spatial variation.
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Fig. 3. Maximum, mean, and standard deviation of global NDVI before and
after ACDF adjustment.

III. RESULTS

A. Results of Different Single and Combinational Approaches

For brevity, results for different adjustments described in
Section II are summarized, without presenting numerous
figures to demonstrate the details for each case, as follows.

• The RRS approach makes the range of NDVI consistent
from year to year as expected. It appears not to fix the bias
in global mean, either by selecting NDmax as the absolute
maximum NDVI or as the average of the top 1% highest
NDVI within the weekly global NDVI map.

• The NML approach fixes the problem in global mean;
however, it causes problems and more variations in the
range (indicated by the maximum NDVI series after
adjustment).

• The LR approach fixes the trend in the global mean NDVI;
however, similar to the NML approach, it is unable to fix
the problem in the maximum global NDVI series.

• The ACDF approach is able to fix the trend in the global
mean NDVI, while global maximum NDVI series shows
great improvement (i.e., much smaller variation than the
unadjusted NDVI).

• NML followed by RRS (NML_RRS) fixed the problems
in maximum NDVI time series; however, it left problems
in the global mean NDVI time series.

• Adjusting SBS followed by mean value adjustment among
different satellites using NML (SBS_NML) approach ap-
pears to result in a similar product as the NML or LR
approach.

Of the approaches tested, the ACDF method was the best
in terms of both making the mean NDVI time series align
better among years and reducing the range of variation for
the maximum NDVI series. Fig. 3 shows the adjusted max-
imum, mean, and standard deviation curves compared to the
unadjusted ones. The adjusted maximum NDVI exhibit more
consistent value range from year to year. The adjusted mean
NDVI is more stable and got rid of the secondary peak values
seen in many annual cycles of the unadjusted mean NDVI
curve. The adjusted standard deviation curve is generally above

Fig. 4. Thirteen-class global land surface type map: 1) broadleaf-evergreen
trees (tropical forest); 2) broadleaf-deciduous trees; 3) broadleaf and needle
leaf trees; 4) needle leaf evergreen trees; 5) needle leaf deciduous trees (larch);
6) broadleaf trees with ground cover (savanna); 7) short groundcover (in peren-
nial); 8) broadleaf shrubs with perennial ground cover; 9) broadleaf shrubs with
bare soil; 10) tundra (dwarf trees and shrubs with ground cover); 11) bare soil;
12) cropland (cultivated); and 13) glacial.

the unadjusted curve and has a reduced range of variation.
It is worthwhile to point out that the statistical properties
of the ACDF adjusted global NDVI can be expected as a
result of the assumptions we made with the ACDF method.
Therefore, the more consistent time series of maximum, mean,
or standard deviation of the ACDF adjusted NDVI is rather a
justification than a validation criterion, particularly considering
the known problems and inconsistencies in the unadjusted
global NDVI data set over the long term. We will further
evaluate the ACDF adjusted NDVI data sets in the following
sections.

B. Evaluation for Global Major Land Cover Types

The underlying assumption for the adjustment approaches
in this paper is the statistical stationary property of the TOA
equivalent NDVI data set at global scale. There is no way to
verify the validity of the stationary property of NDVI at global
scale without very high quality (e.g., accurate and consistent)
global coverage observations. However, it is probably the best
assumption to make, considering all sources of errors in the
unadjusted NDVI data sets. Although the global-scale trend
(e.g., in terms of global mean NDVI) is removed by the station-
ary assumption of the ACDF approach, the regional trend does
not necessarily disappear in the adjusted NDVI data set. Here,
we will compare and contrast the unadjusted and the ACDF
adjusted NDVI on major land cover types of the globe.

The land type classification map used in the analysis is
the 0.144◦ resolution global land surface vegetation type map
which was derived by resampling the 1.0◦ resolution 13-class
vegetation type map in the Global Forecast System [15] cur-
rently used at NOAA/NCEP/EMC into a 0.144◦ resolution
latitude/longitude grid (see Fig. 4). These 13 land cover (or
vegetation type) classes include: 1) broadleaf-evergreen trees
(tropical forest); 2) broadleaf-deciduous trees; 3) broadleaf
and needle leaf trees; 4) needle leaf evergreen trees;
5) needle leaf deciduous trees (larch); 6) broadleaf trees with
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ground cover (savanna); 7) short groundcover (in perennial);
8) broadleaf shrubs with perennial ground cover; 9) broadleaf
shrubs with bare soil; 10) tundra (dwarf trees and shrubs
with ground cover); 11) bare soil; 12) cropland (cultivated);
and 13) glacial.

Classes 7 and 12 were referred to as grassland and agricul-
ture, respectively, in the Simple Biosphere Model, version 1
(SiB1) vegetation classification [15]. In the derived higher
resolution land surface vegetation class map, considering the
same or similar parameters used for several classes, the number
of classes is regrouped into ten (note: class 13 was excluded
from the following analysis) by combining the above classes
7 and 12 into a single class, and classes 8 and 9 into another
single class. We chose to combine these classes to increase the
sample size in each class.

To further understand the effects after the ACDF adjustment
applied to the NDVI data set, we separately evaluated the time
series of maximum, mean, and standard deviation of weekly
global NDVI for each major land use class (see Fig. 5).

• The maximum values (green lines) for all the classes
are more consistent from year to year after the ACDF
adjustment than those before the adjustment, although they
still have moderate to strong seasonal variations as seen in
the unadjusted series.

• The mean values (blue lines) for most classes are larger
than the unadjusted series. For class 5—needle leaf decid-
uous trees, and for class 10—tundra, the two-peak patterns
within the annual cycles in the unadjusted series [see the
red line in Fig. 5(e)] were reduced to one.

• The ranges of standard deviation values (black lines) are
more consistent after the ACDF adjustment.

Note that speaking of peak of maximum values (i.e., not
average values), needle leaf deciduous trees’ NDVI [Fig. 5(e)]
could be as large as that of the tropical forest [Fig. 5(a)]. Part of
the reason is that NDVI tends to saturate at very high/dense
vegetation value pixels, although in terms of photosynthetic
activities, tropical forest is much stronger.

Table II summarizes the 22-year mean and trend (calculated
from the least square linear fitting of the annual averaged class
mean NDVI series) of the unadjusted and adjusted NDVI for
each class, as well as their absolute and relative differences.
We can see that the unadjusted NDVI has significant increasing
trend over the 22-year period from 1982 to 2003. For example,
classes 1, 2, 3, 7 and 12, and 10 have +15.0%, +15.4%,
+18.7%, +17.9%, and +15.3% increase, respectively,
for the unadjusted NDVI (see column 4 of Table II);
whereas, the adjusted NDVI has much less significant trend
(see column 6 of Table II). The overall trend is +14.9% for the
unadjusted global NDVI (excluding class 13—glacial which
only accounts for 2% of the total land mass between 75◦N and
55◦S); whereas, it is only +0.1% for the adjusted data set. For
majority of the classes, the adjusted NDVI are larger than the
unadjusted except for classes 4, 5, and 10, while the overall
difference is 1.4%. For details, see columns 7 and 8 of Table II.

C. Dependencies on Satellite ECT

There is a dependency of NDVI magnitude on satellite
ECT in the unadjusted global NDVI data set, and we ex-

pected that this characteristic would be eliminated after the
ACDF adjustment. Fig. 6(a) shows the time series of ECT
for the operational NOAA polar-orbiting satellites [16] cov-
ering the data period in this paper. One of the significant
problems in the unadjusted NDVI time series is the obvious
dependency on satellite ECTs from different polar orbiters.
As an example, Fig. 6(b) depicts the global average NDVI
for week 27 (i.e., early July) of different years. The general
decreasing trend is obvious for the global mean NDVI from
each satellite within its operational period, while the adjusted
NDVI gets rid of most of the problem. Note that ECT is
not the sole reason for the discrepancies seen in the global
mean NDVI time series. Although NOAA-7 and NOAA-9
have very similar ECT shift patterns, there are other major
causes that resulted in the fluctuation seen in Fig. 6, which
are most likely due to the volcano aerosols emitted by El
Chichon from March to April 1982 and Mount Pinatubo in
June 1991. For NOAA-16, although ECT shift is not as serious
compared to other previous satellites, calibration among still
other factors (not yet fully addressed while this paper is being
written) probably caused the decreasing trend seen in Fig. 6(b)
(from 2002 to 2004).

D. Regional Trend Before and After ACDF Adjustment

To evaluate the regional NDVI after the ACDF adjustment,
we analyzed the annual averaged regional NDVI time series
for ten major continental-scale regions over the globe. For
regions covering high latitudes (e.g., above 60◦N) of the
Northern Hemisphere, winter weeks were excluded from the
analysis because of the spurious signals due to extreme low
solar elevation angles and snow cover, and growing season
(i.e., from April to October, or weeks 14 to 43) NDVI were
averaged for these regions. Fig. 7 presents the annual averaged
regional NDVI time series resulted from the unadjusted and
adjusted global NDVI data sets for these regions. For regions
in Northern Hemisphere mid to high latitudes, we included
North America (35◦N–75◦N, 168◦W–55◦W, growing season),
Europe (35◦N–75◦N, 11◦W–60◦E, growing season), Asia
(35◦N–75◦N, 60◦E–180◦E, growing season), and Contiguous
United States (CONUS) (25◦N–50◦N, 125◦W–60◦W), as
shown in Fig. 7(a)–(d). For regions in Northern Hemisphere
low to mid latitudes, we have Africa (0◦N–35◦N, 18◦W–52◦E),
Asia (0◦N–35◦N, 55◦E–140◦E), and Central America
(0◦N–35◦N, 122◦W–60◦W), as shown in Fig. 7(e)–(g).
For regions in Southern Hemisphere, we included South
America (0◦S–55◦S, 83◦W–35◦W), Africa (0◦S–35◦S,
18◦W–51◦E) and Australia (10◦S–45◦S, 112◦E–154◦E), and
results are shown in Fig. 7(h)–(j). The adjusted NDVIs are
larger than the unadjusted ones for these regions and have less
interannual variation than the unadjusted series. Much of the
increase in the average adjusted NDVI is caused by increases
in the anomalously low values for NOAA-7 and NOAA-9
and by the correction in the adjusted data for the effect of
much later ECTs as the satellites age. The adjusted global
NDVI exhibits more consistent features at the continental
scales. Note that it is not directly applicable to draw conclusion
on 1988 U.S. drought signal detection using the unadjusted
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Fig. 5. Unadjusted and adjusted series of maximum, mean, and standard deviation of NDVI within each land surface class from 1982 to 2003.

NDVI, as shown in Fig. 7(d). The annual averaged CONUS
domain mean NDVI is not sufficient for one to infer drought
for a particular week, month, or season. Moreover, the low

annual CONUS mean NDVI for 1988, as seen in Fig. 7(d),
is more likely due to the NOAA-9 AVHRR sensor’s serious
degradation, which is evident in Fig. 6, and caused the obvious
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TABLE II
COMPARISON OF UNADJUSTED AND ACDF-ADJUSTED NDVI FOR DIFFERENT LAND CLASSES

Fig. 6. (a) Satellite ECTs for the period 1982 to 2003. (b) Global mean of
unadjusted and adjusted NDVI for week 27 from 1982 to 2993.

lower-than-normal global mean NDVI values seen in Fig. 1
(thick black line).

Table III compares the unadjusted and adjusted global NDVI
in terms of mean of the annual averaged NDVI and 22-year
trend in the annual averaged NDVI series (calculated from the
linear fitting of the annual averaged regional NDVI series),
as well as their differences for the above ten regions. For the
unadjusted regional NDVI, the 22-year trends are all positive
for these regions, and the trends are very large (e.g., more than
15%) for regions such as Europe (+27.6%), North America
(+19.4%), Asia (low to mid latitude, +17.7%), Asia (mid
to high latitude, +15.9%), CONUS (+15.6%), and Central

America (+15.4%); whereas the adjusted NDVI have much
smaller to even negative trends for these regions, e.g., +8.5%
for Europe, +1.4% for North America, and −0.0% for Asia
(low to mid latitude). For other details, see Table III. To-
gether with Fig. 7, these results imply that after the global-
scale ACDF adjustment to NDVI, the very large regional-scale
NDVI satellite-to-satellite variations in the unadjusted NDVI
data sets are suppressed, and the very large regional vegeta-
tion increasing trend for the 22-year period are significantly
reduced. However, although the variations caused by instru-
ment change and equator-crossing drift are suppressed, local
vegetation anomalies due to drought and abnormally favorable
weather are retained in the data.

E. Evaluation by Applications on Regional Severe Droughts

Regional droughts (resulting from long lasting below normal
precipitation amount and/or high temperature) can cause below
normal vegetation growth and maturation. Presently, one of
the important applications of global NDVI (resulting from the
NOAA GVI2 data sets) is the detection of regional drought.
However, as can be inferred from Fig. 7 and Table III, with a
large satellite-caused trend of regional NDVI in the unadjusted
global NDVI data sets, drought detection becomes harder. In a
particular region, the indicator of drought for a certain period of
a year may be marked by the abnormally low NDVI compared
to a multiyear average or by the extent to which the real-time
NDVI approaches the known historical minimum NDVI. The
latter forms the basis of the vegetation condition index (VCI)
defined as

VCI =
ND − NDmin

NDmax − NDmin
· 100 (4)

where NDmin and NDmax are the climatological minimum
and maximum NDVI, respectively, within the known data
sets. Note that these quantities are rederived after the ACDF
adjustment, thus NDmin and NDmax in the adjusted data set
are different from those in the unadjusted data set. ND is the
real-time NDVI. We refer to [4], [17], and [18] for detailed
discussions on VCI and its applications. VCI normally ranges
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Fig. 7. Annual averaged series of unadjusted and adjusted spatial mean NDVI for ten regions of the globe. (a) North America Growing Season [35N–75N,
168W–55W]. (b) Europe Growing Season [35N–75N, 11W–60E]. (c) Asia (Mid to High Latitude) Growing Season [35N–75N–60E–180E]. (d) CONUS U.S.
[25N–50N, 125W–60W]. (e) Africa (Northern Hemisphere) [0N–35N, 18W–52E]. (f) Asia (Low to Mid Latitude) [0N–35N, 55E–140E]. (g) Central America
[0N–35N, 120W–60W]. (h) South America [0S–55S, 83W–35W].

between 0 and 100. Low VCI values (e.g., below 40) indicate
abnormally low vegetation growth, whereas high VCI values
(e.g., above 60) indicate the opposite.

Here, we separately apply (4) to the unadjusted and ACDF
adjusted NDVI data sets and show the application of VCI to
the detection of 2005 U.S. droughts. As reported from ground
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TABLE III
COMPARISON OF SPATIALLY AVERAGED UNADJUSTED AND ACDF ADJUSTED NDVI FOR DIFFERENT REGIONS FROM 1982 to 2003

observations and demonstrated by the U.S. Drought Monitor
(online at http://www.drought.unl.edu/dm/monitor.html), there
are moderate to severe droughts from the northeast to central
U.S. in the growing season of 2005.

Fig. 8 presents the VCI from the unadjusted and ACDF-
adjusted NDVI for weeks 20 (May), 29 (July), and 37
(September) of 2005. We can see that the VCI from the ACDF-
adjusted NDVI demonstrate much stronger drought signals
(i.e., low VCI value clusters) than those from the unadjusted
NDVI. It is this feature of the ACDF-adjusted NDVI that makes
it useful for drought detection and as a source of GVF for NWP
boundary conditions.

To further demonstrate the impact on regional severe drought
detection using the ACDF-adjusted NDVI data set as op-
pose to the unadjusted NDVI, we have selected 14 cases of
severe regional droughts and compared regional averaged stan-
dardized NDVI anomalies from the unadjusted and ACDF-
adjusted NDVI data sets. The standardized NDVI anomaly is
defined as

ND∗ =
ND − ND

σND
(5)

where ND∗ is the standardized NDVI, and ND and σND are
the average and the standard deviation of NDVI, respectively,
in the time series of our sample data set from 1982 to 2003.

More negative ND∗ value indicates stronger below normal
growth for vegetation, which is often the consequence of
severe drought.

Table IV shows the comparisons of regional mean ND∗

for 14 drought cases. These droughts occurred at four major
continents over 14 years (e.g., from 1985 to 1998), covering
various climatic regions. Column 2 of this table indicated the
region, spatial range, and time (e.g., week number and year
number) for these drought occurrences. Detailed descriptions
of these droughts can be found in [4] (for cases i and j), [5] (for
cases b, c, d, k, l, m, and n), [6] (for cases e, f, g, and h), and
[17] (for cases a, b, and c). These droughts were severe enough
that, in the past, even the unadjusted NDVI can detect the strong
anomaly signals, as shown in column 3 of Table IV. Column 4
of Table IV shows that, except for case b, the ACDF-adjusted
NDVI had a similar or enhanced level of negative vegetation
anomaly signals, compared to column 3. Although it is a limited
number of cases, our results provided evidence that the global
stationarity assumption in the ACDF approach does not imply
regional stationarity.

IV. DISCUSSION

There are limitations within the present study scope. The
first is related to the lack of comprehensive validation for the
historical global NDVI data sets because direct ground-based
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Fig. 8. Comparison of VCI resulting from unadjusted and adjusted NDVI data sets over the CONUS U.S. (27◦N–53◦N, 127◦W–67◦W) in 2005 for weeks
20 (May), 29 (July), and 37 (September).

TABLE IV
COMPARISON OF REGIONAL NDVI ANOMALIES FROM THE UNADJUSTED AND THE ADJUSTED GLOBAL NDVI DATA SETS

or other independent observations are not available, except for
a few limited regions. It is doubtful that the ground data from a
few local field campaigns are of much use to validate a global
data set, although they can provide useful insights on sensor

performance for specific areas under specific environmental
conditions.

The second limitation is the lack of full physics-based cor-
rections to the raw remote sensing data from which NDVI
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was derived. The weekly global SMN based on the operational
AVHRR data, although derived after the best known
prelaunch and postlaunch calibrations, lack operational glob-
ally consistent correction procedures for atmospheric effects,
sun–earth–target geometry variation, and spectral variation
from one sensor to the next. Even after the recent effort by
NOAA/NESDIS scientists to reprocess the AVHRR global area
coverage data and thereby establish a global vegetation CDR,
the temporal discrepancies in NDVI arising from different
generations of sensors remain an issue.

The third limitation is the assumption of the stationary
property on the interannual total global vegetation amount for
a week. If the Earth is greening, as several studies based on
the AVHRR record have suggested, then our assumption of
stationarity is incorrect. However, the long-term studies of
“global greening” must deal with the problems of calibra-
tion, orbit drift, and spectral changes from AVHRR/1 through
AVHRR/3. None, so far, have dealt with all of these issues, so
the magnitude of long-term greening, which is inferred from the
AVHRR data set, is still an open question. Another shortcoming
related to this assumption is that smooth variation cannot, in
a strict sense, be used as a criterion for validation. In the
context of this paper, we use the smooth and consistent vari-
ation of global NDVI as a justification for a quality-improved
global data set over the long term, considering the known
problems and inconsistencies in the unadjusted global NDVI
data set.

For purposes of initialization of weather forecast models
with AVHRR GVF, the ACDF-adjusted NDVI is superior to
the uncorrected data. The errors in GVF eliminated by the
ACDF procedure are significant and known. If the lack of
global stationarity becomes a problem as the greenness of the
Earth changes over the long term, then the climate reference
data set years (1989, 1990, 1995, 1996, 1997, and 1998) will
have to be changed to accommodate the changing greenness of
the Earth in later years.

V. CONCLUSION

A number of different simple one-step (e.g., RRS, RRS_Top
1%, NML, LR, and ACDF) global adjustment approaches
have been investigated in this paper. Combined uses of
such procedures (e.g., NML_RRS and SBS_NML) are also
investigated, and results are briefly described together with the
one-step approaches.

Most of these approaches need a benchmark annual cycle
from the 52-week global NDVI climatology, which uses the
best quality and most temporally stable NDVI data available
from 6 of the 22 years (1989, 1990, 1995, 1996, 1997, and
1998, composed of NOAA-11 and -14 data). Overall, among
the approaches investigated here, we conclude that the ACDF
approach produces a temporally more consistent historical data
set of global NDVI over the past two decades, reasonably
free of false temporal trends from sensor aging or change in
sensor spectral bandwidth or equatorial crossing time. Given
its simplicity, it can be implemented in near real-time weekly
operations of NESDIS AVHRR-based NDVI data processing
with minimum overhead. Our future effort will be to derive

the GVF, which is used by the operational weather and climate
models at NOAA/NCEP/EMC from the ACDF-adjusted NDVI
data set in an operational manner.

ACKNOWLEDGMENT

The authors would like to thank Dr. A. Ignatov of
NOAA/NESDIS/STAR for the information regarding NOAA
polar-orbiting satellite ECT and Dr. J. T. Sullivan of
NOAA/NESDIS/STAR for the comments during various stages
of this study. The contents of this paper are solely the opinions
of the authors and do not constitute a statement of policy, deci-
sions, or position on behalf of NOAA or the U.S. Government.

REFERENCES

[1] K. B. Kidwell, Global Vegetation Index User Guide. U.S. Dept. of
Commerce, NOAA/NESDIS. Asheville, NC: Satellite Data Services
Division, Nat. Climatic Data Center, 1994.

[2] G. Gutman, D. Tarpley, A. Ignatov, and S. Olson, “The enhanced NOAA
global land data set from the Advanced Very High Resolution Radiome-
ter,” Bull. Amer. Meteorol. Soc., vol. 76, no. 7, pp. 1141–1156, Jul. 1995.

[3] F. N. Kogan, “Remote sensing of weather impacts on vegetation in non-
homogeneous areas,” Int. J. Remote Sens., vol. 11, pp. 1405–1419, 1990.

[4] F. N. Kogan, “Global drought watch from space,” Bull. Amer. Meteorol.
Soc., vol. 78, no. 4, pp. 621–636, Apr. 1997.

[5] F. N. Kogan, “Operational space technology for global vegetation as-
sessment,” Bull. Amer. Meteorol. Soc., vol. 82, no. 9, pp. 1949–1964,
Sep. 2001.

[6] R. A. Seiler, F. Kogan, and W. Guo, “Monitoring weather impact and crop
yield from NOAA AVHRR data in Argentina,” Adv. Space Res., vol. 26,
no. 7, pp. 1177–1185, 2000.

[7] J. D. Tarpley, S. R. Schneider, and R. L. Money, “Global vegeta-
tion indices from the NOAA-7 meteorological satellite,” J. Clim. Appl.
Meteorol., vol. 23, no. 3, pp. 491–494, Mar. 1984.

[8] R. B. Myneni, C. D. Keelivolng, C. J. Tucker, G. Asrar, and R. R. Nemani,
“Increased plant growth in the northern high latitudes from 1981 to 1991,”
Nature, vol. 386, no. 6626, pp. 698–702, Apr. 1997.

[9] L. L. Stowe, R. M. Carey, and P. P. Pellegrino, “Monitoring the
Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data,” Geophy. Res.
Lett., vol. 19, no. 2, pp. 159–162, Jan. 1992.

[10] G. Gutman and A. Ignatov, “The derivation of the green vegetation frac-
tion from NOAA/AVHRR data for use in numerical weather prediction
models,” Int. J. Remote Sens., vol. 19, no. 8, pp. 1533–1543, May 1998.

[11] M. B. Ek, K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren,
G. Gayno, and J. D. Tarpley, “Implementation of NOAA land surface
model advances in the National Centers for Environmental Prediction
operational mesoscale Eta model,” J. Geophys. Res., vol. 108, no. D22,
8851, 2003. DOI: 10.1029/2002JD003296.

[12] C. R. N. Rao and J. Chen, “Inter-satellite calibration linkages for the
visible and near-infrared channels of the advanced very high resolution
radiometer on the NOAA-7, -9, and -11 spacecraft,” Int. J. Remote Sens.,
vol. 16, pp. 1931–1942, 1995.

[13] X. Wu, “Operational calibration of AVHRR/3 solar reflectance channels,”
in Proc. Conf. Characterization Radiometric Calibration for Remote Sens.
Logan, UT: Utah State Univ., Aug. 2004.

[14] A. van Dijk, S. L. Callis, C. M. Sakamoto, and W. L. Decker, “Smoothing
vegetation index profiles: An alternative method for reducing radiometric
disturbance in NOAA/AVHRR data,” Photogramm. Eng. Remote Sens.,
vol. 53, pp. 1059–1067, 1987.

[15] P. J. Sellers, S. O. Los, C. J. Tucker, C. O. Justice, D. A. Dazlich,
G. J. Collatz, and D. A. Randall, “A revised land surface parameterization
(SiB2) for atmospheric GCMs—Part II: The generation of global fields
of terrestrial biophysical parameters from satellite data,” J. Clim., vol. 9,
no. 4, pp. 706–736, Apr. 1996.

[16] A. Ignatov, I. Laszlo, E. D. Harrod, K. B. Kidwell, and G. P. Goodrum,
“Equator crossing times for NOAA, ERS and EOS sun-synchronous satel-
lites,” Int. J. Remote Sens., vol. 25, no. 23, pp. 5255–5266, Dec. 2004.

[17] F. N. Kogan, “Droughts of the late 1980s in the United States as derived
from NOAA polar orbiting satellite data,” Bull. Amer. Meteorol. Soc.,
vol. 76, no. 5, pp. 655–668, May 1995.

[18] F. N. Kogan and X. Zhu, “Evolution of long-term errors in NDVI time
series: 1985–1999,” Adv. Space Res., vol. 28, no. 1, pp. 149–153, 2001.



422 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 2, FEBRUARY 2008

Le Jiang received the B.Sc. degree in atmospheric
science from Nanjing University, Nanjing, China, in
1991 and the Ph.D. degree in earth system science
from the University of Cincinnati, Cincinnati, OH,
in 2000.

He is with I. M. Systems Group, Inc. (IMSG),
National Oceanic and Atmospheric Administration
(NOAA), National Environmental Satellite, Data,
and Information Service (NESDIS), Camp Springs,
MD, where he is the Chief Scientist/Program Man-
ager. He is currently leading the IMSG scientific and

technical support teams at NOAA/NCEP/EMC and NOAA/NESDIS/STAR on
algorithm development, satellite applications, and research. He had developed
the satellite-based methodology for land surface evapotranspiration monitoring
and improved the operational algorithms for AVHRR-based global vegetation
monitoring, among others. He is an Affiliate Member of the IEEE Geoscience
and Remote Sensing Society.

J. Dan Tarpley is with the Center for Satellite
Applications and Research, National Oceanic and
Atmospheric Administration, National Environ-
mental Satellite, Data, and Information Service
(NESDIS), Camp Springs, MD, as the Chief of the
Environmental Monitoring Branch, Satellite Meteo-
rology and Climatology Division, where he leads the
land remote sensing activities. His interests include
development and use of remotely sensed snow cover,
vegetation conditions, surface albedo, surface radia-
tion budget, and precipitation products for validation
and boundary conditions in NWP models.

Kenneth E. Mitchell received the B.Sc., M.Sc.,
and Ph.D. degrees in meteorology from The
Pennsylvania State University, University Park, in
1973, 1975, and 1979, respectively.

He worked in numerical weather prediction model
development at the Air Force Global Weather
Center from 1978 to 1982 and at the Air Force
Geophysics Laboratory from 1982 to 1988. Since
1989, he has been with the Environmental Mod-
eling Center, National Oceanic and Atmospheric
Administration, National Centers for Environmental

Prediction (NCEP), Camp Springs, MD, where he focuses on land surface
modeling in NCEP weather and climate prediction models spanning short-range
regional mesoscale models to seasonal-range global models.

Sisong Zhou received the B.Sc. degree in meteo-
rology from the Nanjing University of Information
Science and Technology, Nanjing, China.

He was a scientist in the field of satellite re-
mote sensing. In 2006, he retired from I. M. Sys-
tems Group, Inc., National Oceanic and Atmospheric
Administration (NOAA), National Environmental
Satellite, Data, and Information Service (NESDIS),
Camp Springs, MD. From 1991 to 2006, he was a
Support Scientist at NOAA/NWS and NOAA/
NESDIS. From 1989 to 1991, he was a Senior Resi-

dent Research Associate at the National Research Council (USA). From 1971
to 1989, he was with the National Satellite Meteorological Center of China.

Felix N. Kogan received the Ph.D. degree in envi-
ronmental sciences from the World Meteorological
Center (WMC), Moscow, Russia.

He was with the Institute for Agricultural Meteo-
rology, Obnisk, Russia, the WMC, Moscow, and the
University of Missouri, Columbia. He is currently
with the Center for Satellite Application and Re-
search, National Oceanic and Atmospheric Admin-
istration, National Environmental Satellite, Data, and
Information Service (NESDIS), Camp Springs, MD.
His works include research and development in the

application of satellite data to land and atmosphere, development of long-term
AVHRR data sets, assessment of the impact of climate and weather on human
activities, climate variability, and environmental hazards.

Wei Guo received the M.S. degree in satellite me-
teorology from Peking University, Beijing, China,
in 1990.

He has been a Senior Scientific/System Pro-
grammer with I. M. Systems Group, Inc., National
Oceanic and Atmospheric Administration (NOAA),
National Environmental Satellite, Data, and Informa-
tion Service (NESDIS), Camp Springs, MD since
2002. He was with the National Satellite Mete-
orology Center of China, University of Virginia,
Charlottesville, University of Maryland, College

Park, and Center for Satellite Application and Research, NOAA/NESDIS,
Camp Springs. His works include scientific data analysis, application software,
and utility tool development to support land surface remote sensing R&D.


